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Abstract— Model predictive control is applied to regulate
the longitudinal motion of a connected automated vehicle in
mixed traffic scenarios. A prediction method is proposed to
enable model predictive control in low-automation, medium-
connectivity situations using instantaneous motion information
from multiple predecessor vehicles. This includes detection
of unconnected vehicles that may be mixed between con-
nected ones. Simulations using real human driver data for the
predecessors show that, if the drivers are well-characterized
on average, a hidden unconnected vehicle can be detected
over 90 % of the time. Moreover, the resulting preview can
recover 46 % of the gap in energy performance between single-
predecessor prediction and ideal preview. Results are also
compared to a classical controller that utilizes instantaneous
information from multiple predecessors.

I. INTRODUCTION

Advanced cruise control systems using various techniques
have been studied extensively. Several results in both simu-
lations [1] and experiments [2], [3] have promised energy
benefits and collision avoidance guarantees [4]. Adaptive
cruise control (ACC) has even made its way into common
commercial vehicles. It uses measurements of the preceding
vehicle’s position and speed to guide the host vehicle’s
acceleration. While ACC can theoretically mitigate traffic
jams, commercial systems have been shown to lack this
property [5]. When the vehicles are equipped with vehicle-to-
vehicle (V2V) connectivity, connected cruise control (CCC)
algorithms can be developed to improve the performance of
connected automated vehicles (CAVs). For example, utilizing
the preceding vehicle’s acceleration may enable the CAV
to use shorter headways [6], [7]. Moreover, incorporating
motion information from multiple connected vehicles ahead
can lead to significant energy savings compared to ACC as
demonstrated by recent experiments [8], [9].

In addition to these classical controllers, model predictive
control (MPC) has also been implemented for cruise control.
MPC can explicitly consider constraints [10], making it
well-suited to requirements like collision avoidance and
obeying speed limits. Moreover, MPC can utilize preview
information about the preceding vehicle’s motion [1]. That
is, if the preceding vehicle is connected and uses a predictive
algorithm, it can share future intentions and the CAV can
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2Tamás Molnár and Gábor Orosz are with Department of Mechani-
cal Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
molnart@umich.edu, orosz@umich.edu

3Tamás Molnár is also with the Department of Mechanical and Civil
Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
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Fig. 1. A connected automated vehicle (CAV) following two conventional
human-driven vehicles (HVs) and a connected human-driven vehicle (CHV).

use this information in its longitudinal controller to adjust
its motion in anticipation of future acceleration or braking.
This approach can also be extended for a platoon of CAVs
[11] that is often referred to as cooperative adaptive cruise
control (CACC) [11]. A review of several simulation and
experimental studies [6] lists energy improvements of up
to 50 % from various forms of anticipative car-following,
although the results depend heavily on the scenario and
preview quality. Since the preceding vehicle’s future trajec-
tory sharing cannot be generally assumed in today’s traffic,
recent research efforts focus on predicting the motion of
the preceding vehicle based on current and/or historical
measurements [12], [13].

In this paper, we explore the advantages of combining
the multi-predecessor connected cruise control algorithms
[14] with MPC [6] for scenarios with lean penetration
of automation and connectivity. That is, we focus on the
longitudinal control design of a CAV when following un-
connected human-driven vehicles (HVs) while a connected
human-driven vehicle (CHV) further downstream shares its
motion information via V2V communication; see Fig. 1.
This additional information is incorporated via preview. The
intelligent driver model (IDM) [15] is used to predict the
motion of the CAV’s immediate predecessor given the motion
of a CHV further ahead. An identification algorithm is also
proposed to determine the number of “hidden” unconnected
human-driven vehicles that are occluded from the CAV’s
sensors. This approach contrasts with that of [12], which
derives a road speed profile from recent CHV motion without
explicitly identifying such hidden vehicles. Experimental
data from real vehicles is utilized to evaluate the energy
consumption of different control strategies.

The paper is outlined as follows. In Section II the collec-
tion of human predecessor data is described which is used
in the rest of the paper to test the proposed algorithms.
Section III describes the vehicle dynamics, energy consump-
tion, and driver behavior. Section IV gives the details of the
classical and model predictive controllers while the results
are presented in Section V. Finally, Section VI summarizes
the paper and outlines the steps for practical implementation.



II. DATA COLLECTION AND SIMULATION SCENARIO

In this paper, we utilize the measurement data collected
by the experiments reported in [8], where eight vehicles
performed car-following on a single-lane straight road. Here
we focus on four members of the eight-vehicle string, where
three human-driven vehicles were followed by a connected
automated vehicle (CAV) as illustrated in Fig. 1.

During the experiment, the GPS position and speed shown
in Fig. 2 were recorded for each vehicle, which allows
one to analyze the human driving behavior, design control
algorithms for the CAV, and evaluate the corresponding
energy consumption. The GPS position and speed data were
shared amongst the vehicles via vehicle-to-vehicle (V2V)
connectivity every 0.1 s. This way, the CAV was able to
respond to the motion of multiple preceding vehicles using
the control algorithm summarized in Section IV-A.
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Fig. 2. Experimental data for the CAV’s predecessors. (a) speed data for
three consecutive vehicles. (b) distance between vehicle 1 and vehicle 2
(green) and distance between vehicle 1 and vehicle 3 (red).

Although all human-driven vehicles were connected in the
experiment, our goal here is to relax this assumption to mixed
connectivity. Therefore, in the proposed control algorithms
we assume that vehicle 2 in Fig. 1 is not equipped with
connectivity and is occluded from the CAV’s sensors. Hence
the CAV can access the position s1 and velocity v1 of the
preceding human-driven vehicle 1 and the position s3 and
velocity v3 of the distant connected human-driven vehicle
3 only. That is, the human-driven vehicle 2 remains hidden
for the CAV and its existence can only be inferred from the
motions of vehicles 1 and 3.

The classical controller implemented in the experiments
of [8] will be used as a benchmark when evaluating the
performance of the proposed MPC algorithm. In the eval-
uations of MPC, two vehicles are simulated numerically: the
CAV and vehicle 1. Unlike the CAV that uses a closed-loop
controller, the experimental speed trajectory is imposed on
vehicle 1. Figure 2 shows the measured velocity and position
trajectories, with position expressed relative to vehicle 1.

III. MODELING

Models required for this study include longitudinal vehicle
dynamics, wheel-to-distance energy consumption, and driver
behavior. This section addresses these topics in order.

A. Vehicle Dynamics with Delay

The dynamics of the CAV is modeled using the delayed
double integrator

ṡ(t) = v(t),

v̇(t) = a(t),

a(t) = min
{

max {u(t− σ), −u} , u
(
v(t)

)}
.

(1)

Here the dot represents derivative with respect to the time t,
while s, v and a denote the position, velocity and accelera-
tion of the vehicle, respectively. The acceleration command
u from the cruise controller becomes the actual acceleration
after delay σ, which is considered to be 0.6 s for the CAV
and incorporates the powertrain and communication delays.
This delay matches that used for simulation in [16], which
obtained a mildly longer delay of 0.8 s to 0.9 s in experimen-
tal data. The maximal acceleration command u represents
the torque limitation of the engine that depends on the
velocity v and u represents the braking torque limitation; see
Fig. 6(a). The resistance terms arising from rolling resistance,
air resistance and grade are neglected for simplicity. These
can be compensated using lower-level controllers in practical
implementations, as demonstrated in [3]. We remark that the
model (1) is also used for the controller’s prediction of the
human-driven vehicles 1 and 2 where u is obtained from
car-following models. In this case the delay is neglected
for simplicity since including it changed the model fitting
metric in (5) by less than 0.5 %. The predecessor vehicles’
experimental trajectories are used as the simulation testbed,
capturing more complex longitudinal phenomena like gear
shifts and introducing realistic mismatch to the predictions.

In order to design and evaluate the control algorithms we
discretize time as t = k∆t, k ∈ Z where the time step ∆t is
chosen such that q = σ/∆t is an integer number. Applying
the Euler discretization to (1) results in the discrete time
system

s(k + 1) = s(k) + v(k)∆t+ a(k)∆t2/2,

v(k + 1) = v(k) + a(k)∆t,

a(k) = min
{

max {δq(k), −u} , u
(
v(k)

)}
,

δq(k + 1) = δq−1(k),

...
δ1(k + 1) = δ0(k),

δ0(k) = u(k),

(2)

where we introduced the notation x(k) := x(k∆t). In this
paper we choose ∆t = 0.2 s which results in q = 3 mak-
ing the state space of (2) five dimensional. This choice
provides us with the required accuracy while being com-
putationally feasible for real-time implementation on real
automobiles. For example, when choosing ∆t = 0.1 s the



resulting trajectories are indistinguishable from those ob-
tained for ∆t = 0.2 s, while the computational time increases
significantly due to the eight dimensional state space and
greater number of control moves along horizons of equal
time.

B. Energy Consumption

Each algorithm’s energy performance is assessed based on
the mass-normalized energy E expended at the wheels over
the total simulated time tf :

E =

∫ tf

0

max
{(
a (t) + ar + crv

2 (t)
)
, 0
}
v (t) dt. (3)

This energy model accounts for rolling resistance via
ar, aerodynamic drag via cr, and braking losses via the
integrand’s non-negativity. However, it does not attempt
to capture changes in powertrain efficiency that may be
highly vehicle-specific. Here we use the vehicle parameters
ar = 1.47× 10−1 m/s2 and cr = 2.75× 10−4 m−1 which
correspond to the values of a Ford Escape; see [1].

C. Human Driver Behavior

The Intelligent Driver Model (IDM) [15] is used to predict
the HVs’ future motion. This model determines the n-th
vehicle’s acceleration using the following closed form law:

un = a0

[
1−

(
vn
vmax

)δ
−
(
ddes
dn

)2
]
, (4a)

where the desired distance is given by

ddes = dst + max

{
0, τhvn −

vnḋn√
4a0b0

}
. (4b)

The distance between vehicle n and its predecessor n+ 1 is
calculated from the positions as dn = sn+1 − sn − ` where
` denotes vehicle length. This yields the relative velocity
ḋn = vn+1 − vn. When simulating the IDM online as pre-
view for MPC, we also use the Euler discretization of (2)
with the discretization step ∆t = 0.2 s while omitting the
delay (q = 0).

The IDM contains six parameters which are identified by
using the data of five human drivers that participated in the
experiment of [8]. The parameters were found using the
global optimizer NOMAD [17] while solving the optimiza-
tion problem

min
xp

Jp =
1

Nv

Nv∑
n=1

√√√√ 1

Ns

Ns∑
k=1

(
d̂n(k)− dn(k)

)2
,

s.t. 0.1 m/s2 ≤ a0 ≤ 4 m/s2,

0.1 m/s2 ≤ b0 ≤ 8.5 m/s2,

0.1 m ≤ dst ≤ 10 m,

0.1 s ≤ τh ≤ 4 s,

0 ≤ vmax ≤ 36 m/s,

1 ≤ δ ≤ 10,

xp =
[
a0 b0 dst τh vmax δ

]
,

(5)

where the cost function Jp compares the distance d̂n obtained
by simulating the IDM (4) to dn given by the measurement
data. The simulation was run for Ns = 5001 time steps and
the error was averaged for Nv = 5 human-driven vehicles.
A discretization step of 0.1 s, that is the nominal step
in the experimental data, was used during the parameter
identification process. While this differs from the 0.2 s time
step used for MPC preview generation, the impact of this
time step change on the root mean squared error of each
human driver’s preceding gap was less than 0.5 %.

Table I lists the identified IDM parameters. Notice that the
identified value of b0 is more severe than a typical human de-
celeration. However, [18] also found that a cluster of human
drivers is best modeled with a similarly large b0 ≈ 7 m/s2.
This suggests that for some drivers, an uncomfortably large
acceleration value optimizes b0. We remark that one may also
find more individualized parameters but the corresponding
models may not generalize well for other experiments.

TABLE I
IDM PARAMETERS

Parameter Description Result
a0 Maximum acceleration 2.43 m/s2

b0 Deceleration coefficient 8.5 m/s2
dst Stopping distance 3.3 m
τh Time headway 0.76 s
vmax Speed limit 36 m/s
δ Exponent 6.13

Although the IDM is shown to improve MPC performance
in this study, the proposed framework does not fundamentally
demand a particular driver model. For example, a neural
network model like [19] with similar inputs and outputs to
the IDM could be substituted.

IV. CONTROL DESIGN

This section will describe the multi-predecessor classical
controller used in [8], [14] and the proposed MPC algorithm.
Both controllers are designed around three requirements:

1) Target a headway that is a linear function of speed
with stopping distance dst = 5 m and time headway
T = 1.67 s.

2) Maintain a headway that is no less than a linear
function of speed with stopping distance d = 3 m and
additive time headway T = 0.67 s.

3) Maintain a headway that is no greater than a linear
function of speed with stopping distance d = 10 m and
additive time headway T = 2.86 s.

A. Classical Controller

As a benchmark for evaluating the performance of MPC,
we describe a classical controller [14] that was implemented
on a CAV [8] during the experiments discussed in Section II.
Given that the CAV is able to respond to y preceding vehicles
via connectivity, the classical controller prescribes the CAV’s
acceleration by the following control input:

u = α
(
V (d)− v

)
+

y∑
n=1

βn
(
W (vn)− v

)
. (6)



The first term in (6) ensures that the CAV keeps a desired
distance by adjusting its speed v to a distance-dependent
desired speed V given by the range policy

V (d) = min{max{0, (d− dst)/T}, vmax}. (7)

This range policy suggests that if the distance d drops below
the value dst, the CAV shall stop, while above dst the CAV
shall increase its speed linearly with gradient 1/T until it
reaches the speed limit vmax. The second term in (6) ensures
that the CAV adjusts its speed v to the speed vn of the n-th
preceding vehicle or to the speed limit, according to

W (vn) = min{vn, vmax}. (8)

The controller involves y + 1 control gains: α and βn,
n = 1, . . . , y.

The parameters of the controller were tuned experimen-
tally in [8]. Accordingly, we selected the following param-
eters and simulated the CAV’s motion (1) with control law
(6) as benchmark: dst = 5 m, T = 1.67 s (see requirement
1 above), vmax = 35.76 m/s, α = 0.4 s−1, β1 = 0.2 s−1,
β2 = 0.0 s−1, and β3 = 0.6 s−1.

B. Optimal Controller

A decentralized MPC is adapted from [20] and applied
here. It uses the model (2) to minimize the CAV’s accel-
eration command given the preceding vehicle’s predicted
trajectory. This process involves three main tasks. First, any
unconnected predecessors between the sensed and connected
predecessors must be identified. Then, the immediate prede-
cessor’s trajectory needs to be predicted based on the avail-
able information. Finally, a receding horizon optimal control
problem has to be solved for the acceleration command.
Figure 3 lays out the architecture of the overall process.

1) Predecessor Identification: It is possible that one or
more hidden unconnected vehicles exist between the immedi-
ate sensed predecessor and the next connected vehicle ahead,
numbered l. Figure 1 depicts the case l = 3; however, the
value of l is unknown to the CAV. Hidden vehicles are de-
tected by simulating the string from vehicle l to vehicle 1 and
choosing the number of hidden vehicles nh that best explains
vehicle 1’s past motion. A relatively long past simulation
horizon of M∆t = 23 s is used with a shorter K∆t = 3 s
detection horizon to compute the cost for hidden vehicle
identification. This allows the imprecise initial conditions to
decay before the string model is evaluated. Figure 4 shows
the relationship between these historical horizons, which are
not to be confused with MPC’s future prediction horizon.

Considering the mean squared error of vehicle 1’s esti-
mated position ŝ1 relative to its actual position s1 we solve
the optimization problem

n∗h(k) =arg min
nh(k)

ks
K

M∑
j=M−K+1

(
ŝ1 (nh(k), j)− s1(j)

)2
,

s.t. 0 ≤ nh ≤ min
j

sl(j)− s1(j)− `− dst
`+ dst

,

(9)
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Fig. 3. The optimal controller’s architecture involving the identification of
hidden vehicles, the prediction of the preceding vehicle’s future motion and
the optimal control of the connected automated vehicle.
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Fig. 4. Timeline of the simulation, detection, and prediction horizons of
lengths M , K, and N steps, respectively.

where

ks =

{
1 if nh(k) = n∗h (k − 1) ,

1.5 otherwise,
(10)

and sl denotes the position of the leading CHV. The min-
imum possible number of hidden vehicles nh is 0 and
the maximum is determined by assuming that vehicles of
length ` = 5 m are separated by the stopping distance dst.
The switching penalty ks prevents the number of detected
vehicles n∗h at the current step k from switching unless a
large difference in objective supports the switch. This is
necessary since changes in the number of detected vehicles
can cause the acceleration command to change abruptly, as
will be demonstrated in Section V-A.



The ID simulations, used to identify hidden vehicles, are
executed using the IDM (4) and the double integrator (1)
without delay for the longitudinal dynamics. The initial
position sp(0) and speed vp(0) for hidden vehicle p are
assumed to be

sp (0) = s1 (0) + p
sl (0)− s1 (0)

nh + 1
, (11)

and
vp (0) =

vl (0) + v1 (0)

2
, (12)

respectively, where vl (0) denotes vehicle l’s speed and the
states of vehicles 1 and l are available from past data. After
the number of hidden vehicles n∗h is determined, the final
state of the ID simulation for nh = n∗h is taken as the current
hidden vehicle state.

2) Prediction: Three different types of prediction, listed
below, are considered in this paper in order to obtain a
preview of vehicle 1’s future motion over the horizon of
length N∆t = 16 s; see Fig. 4.

• Full preview: In this case we consider that vehicle 1’s
actual future motion is available to the CAV. This is
not possible in practice but serves as an upper bound
on performance. Although MPC that shares such future
trajectories has been proposed [1], [11], such preview is
still subject to change in closed-loop operation because
of disturbances.

• Driver model: In a partially-connected environment
where most connected vehicles are not automated, only
the instantaneous position and speed of the CHVs and
vehicle 1 are known. Sequential simulations from the
front to rear of the string are therefore carried out
assuming constant speed for the lead CHV. This process
yields vehicle 1’s predicted trajectory as demonstrated
in Fig. 5. Subsequent vehicles’ accelerations are calcu-
lated from the IDM (4). For the simulation shown in
Fig. 5, the two vehicles following the lead CHV are
predicted to temporarily increase their speeds.

• Probability Model: Restricting the CAV to use data from
vehicle 1 only precludes the use of a driver model to
account for vehicle 1’s gap ahead. In [1] a probability
model based on the preceding vehicle’s speed and brake
light state was used to operate under such conditions.
After substituting chance constraints for the worst-
case collision avoidance constraint used in [1], this
probabilistic prediction method is also evaluated as a
baseline to show the benefits of connectivity.

3) Optimal Control Problem: With vehicle 1’s future
trajectory now predicted, it is possible to solve the receding
horizon optimal control problem. This controller is based on
the MPC used in [20], which balances time headway tracking
with acceleration minimization at each prediction step i. The
time headway T = 1.67 s and stopping distance dst = 5 m
are used to meet requirement 1 set at the beginning of this
section. Although the design goal is saving energy, speed
smoothing is chosen over fuel or energy minimization in
order to arrive at a convex quadratic program, which can be
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Fig. 5. IDM-based future velocity (a) and future position (b) for the
three predecessors, beginning with a constant-speed assumption for the
distant CHV and resulting in a more complex trajectory for the immediate
predecessor. Positions are shown relative to vehicle 1.

solved in polynomial time [21]. In [22] it was shown that
most fuel consumed by heavy-duty trucks in traffic was due
to the speed fluctuations. Moreover, [3] demonstrated that a
speed-smoothing MPC using preview information can reduce
the energy consumption of real passenger vehicles relative to
a non-predictive baseline controller.

Here we solve the optimal control problem

min
u(i)

J = qg
(
s1(N)− s(N)− `− dst − Tv(N)

)2
+

N−1∑
i=0

[
qg
(
s1(i)− s(i)− `− dst − Tv(i)

)2
+ qa

(
u2(i) + a2(i)

)]
,

s.t. 0 ≤ v ≤ vmax,

0 ≤ s1 − s− `− Tv − d− dc,
− u ≤ u ≤ u (v) ,

− u ≤ a ≤ u (v) ,

u (v) = min {m1v + b1,m2v + b2} ,

(13)

where the model (2) without saturation establishes the re-
lationship between the states s, v, and a and the control
input u. The constants m1 = 0.285 s−1, m2 = −0.121 s−1,
b1 = 2 m/s2, and b2 = 4.83 m/s2 define a piecewise linear
approximation u (v) of the vehicle’s maximal acceleration
capacity and u = 8.5 m/s2 is the vehicle’s braking capacity,
as shown in Fig. 6(a). The resulting constraints were used in
[1] to approximate the maximum acceleration obtained from
a powertrain model.

Notice that requirement 2 is coded as a constraint in the
optimization problem (13). Additionally, with the gap weight
fixed at qg = 1, the acceleration weight qa was tuned to
meet requirement 3. This results in qa = 960 for probabilistic
preview, qa = 1200 for IDM-based preview, and qa = 200
for full preview.

A chance constraint after [23] is applied to prevent vio-
lations of the collision constraint due to mismatch between
predicted and actual acceleration of the preceding vehicle.
The safety distance dc, shown in Fig. 6(b) as the function
of time, prevents constraint violations with a specified prob-
ability. This probability is chosen to be 0.99999 at the first
prediction stage and 0.5 after 10 s in the future.
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V. RESULTS

Results are presented in three main performance areas:
detection accuracy, energy consumption, and headway vari-
ations.

A. Detection Accuracy

The detection component correctly identified the presence
of a single unconnected vehicle (vehicle 2 in Fig. 1) 90.6 %
of the time as shown in Fig. 7. Transitions between different
numbers of identified vehicles can cause jerks in the accel-
eration command from MPC, highlighting the importance of
avoiding gratuitous transitions.

B. Energy Consumption

Table II lists the normalized energy consumption for each
car-following system along with the mean gap. As expected,
MPC using full preview of vehicle 1’s trajectory (MPC
Full Prev.) delivered the lowest energy consumption. Such
accurate preview is not available in practice because it is
non-causal; even preview from intention-sharing closed-loop
systems is subject to change in the presence of disturbances.
The other results in Table II demonstrate the utility of
multiple-predecessor connectivity. Such systems consumed
5.0 % to 12.7 % less energy compared to the probability-
model system (MPC 1 Pred.) that received information from
only one predecessor. Identification of the hidden vehicle

between vehicles 1 and 3 is also important to energy effi-
ciency. When identification was not used (MPC ID Off), the
CAV consumed 10.3 % more energy than it did when vehicle
2 was connected (MPC Ideal ID). Introducing identification
(MPC ID On) eliminated 80.1 % of the difference in energy
consumption between these two cases.

TABLE II
ENERGY AND HEADWAY RESULTS

Controller Energy [J/kg] Mean Gap [m] Gap RMSE [m]
MPC 1 Pred. 6180 50.34 14.29
Classical 5868 42.45 6.95
MPC ID Off 5948 34.81 13.77
MPC ID On 5505 47.32 12.98
MPC Ideal ID 5395 48.29 12.29
MPC Full Prev. 4698 43.84 8.29

The classical controller (Classical) compares most directly
to the MPC with identification (MPC ID On) since they
both assume that vehicle 1 can be sensed and vehicle 3 is
connected. In this comparison, receding horizon optimization
and IDM-based string preview helped reduce energy con-
sumption by 6.2 %.

C. Headway Variations

In typical car-following applications, shorter headways
are desirable because they enable greater traffic flow at
equal speed. Headway must, however, be long enough for
safety. Table II shows the average headway for the various
controllers, while headway signals are plotted in Fig. 8. With
no attempt made to identify the hidden predecessor, the MPC
consistently commanded excessively high acceleration due
to its prediction based on the wide apparent gap between
vehicle 1 and vehicle 3. This reduced the mean gap in
Table II and sometimes caused the CAV to violate the
headway specification as shown in Fig. 8(c). Identifying the
hidden vehicle based on historical data enabled MPC to meet
the headway specification without re-tuning.

The root mean squared error (RMSE) of the gap relative
to the reference (defined by requirement 1) measures the
quality of gap control. Even with full preview, MPC tended
to trade off gap tracking to reduce acceleration and deviated
more from its gap reference compared to classical control
as shown in Table II. An advantage of MPC is its ability
to explicitly constrain minimum gap, which makes deviation
from the reference safer. Among the three MPC systems that
used IDM-based prediction, identifying the hidden vehicle
improved gap tracking RMSE by 5.7 % and complete knowl-
edge of vehicle 2’s existence improved it by 10.7 %.

VI. CONCLUSION

A method for leveraging multi-predecessor connectivity in
MPC-based connected cruise control was proposed assuming
lean penetration of connectivity and automation. Possible un-
connected vehicles between connected ones were systemati-
cally identified by analyzing past connected vehicle motions.
The results were compared against single-predecessor MPC-
based cruise control, multi-predecessor classical control, and
MPC with ideal preview using real human driver data for
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Fig. 8. Headway tracking comparison with (a) MPC considering vehicle
1 with a probability model, (b) classical control considering vehicles 1 and
3, (c) MPC without identifying vehicle 2, (d) MPC identifying vehicle 2
automatically, (e) MPC given the existence and current state of vehicle 2,
and (f) MPC with full preview of vehicle 1’s future motion.

the predecessors. In general, multi-predecessor connectivity
improved control performance even though only the immedi-
ate preceding vehicle appeared directly in the MPC’s optimal
control problem, because connectivity enables more accurate
preview of the preceding vehicle’s motion. Classical control
using multiple predecessors performed better than MPC
with information from only one predecessor, although MPC
using multiple predecessors performed better still. MPC’s
performance depended largely on correct identification of
hidden unconnected vehicles, which the proposed algorithm
accomplished 90 % of the time.

Identification of appropriate human driver model (IDM)
parameters was important to achieving these positive results.
Therefore, practical implementation may require online up-
dating of IDM parameters as new vehicles enter the string
or the traffic environment changes. Fortunately, individual-
ized IDM parameters were not needed here so data from
connected vehicles only are likely sufficient. This feature
and assessment on various datasets are planned for further
research on this topic.
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